3.2.4 \(\int \frac {x^3 (a+b \csc ^{-1}(c x))}{(d+e x^2)^2} \, dx\) [104]

3.2.4.1 Optimal result
3.2.4.2 Mathematica [B] (warning: unable to verify)
3.2.4.3 Rubi [A] (verified)
3.2.4.4 Maple [C] (warning: unable to verify)
3.2.4.5 Fricas [F]
3.2.4.6 Sympy [F(-1)]
3.2.4.7 Maxima [F]
3.2.4.8 Giac [F(-1)]
3.2.4.9 Mupad [F(-1)]

3.2.4.1 Optimal result

Integrand size = 21, antiderivative size = 593 \[ \int \frac {x^3 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\frac {-a-b \csc ^{-1}(c x)}{2 e \left (e+\frac {d}{x^2}\right )}+\frac {b \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 e^{3/2} \sqrt {c^2 d+e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {i b \operatorname {PolyLog}\left (2,e^{2 i \csc ^{-1}(c x)}\right )}{2 e^2} \]

output
1/2*(-a-b*arccsc(c*x))/e/(e+d/x^2)-(a+b*arccsc(c*x))*ln(1-(I/c/x+(1-1/c^2/ 
x^2)^(1/2))^2)/e^2+1/2*(a+b*arccsc(c*x))*ln(1-I*c*(I/c/x+(1-1/c^2/x^2)^(1/ 
2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^2+1/2*(a+b*arccsc(c*x))*ln(1+I 
*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^2+1 
/2*(a+b*arccsc(c*x))*ln(1-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1 
/2)+(c^2*d+e)^(1/2)))/e^2+1/2*(a+b*arccsc(c*x))*ln(1+I*c*(I/c/x+(1-1/c^2/x 
^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^2+1/2*I*b*polylog(2,(I/ 
c/x+(1-1/c^2/x^2)^(1/2))^2)/e^2-1/2*I*b*polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2 
)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^2-1/2*I*b*polylog(2,I*c*( 
I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^2-1/2*I 
*b*polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e 
)^(1/2)))/e^2-1/2*I*b*polylog(2,I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2) 
/(e^(1/2)+(c^2*d+e)^(1/2)))/e^2+1/2*b*arctan((c^2*d+e)^(1/2)/c/x/e^(1/2)/( 
1-1/c^2/x^2)^(1/2))/e^(3/2)/(c^2*d+e)^(1/2)
 
3.2.4.2 Mathematica [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(1442\) vs. \(2(593)=1186\).

Time = 1.83 (sec) , antiderivative size = 1442, normalized size of antiderivative = 2.43 \[ \int \frac {x^3 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx =\text {Too large to display} \]

input
Integrate[(x^3*(a + b*ArcCsc[c*x]))/(d + e*x^2)^2,x]
 
output
(I*b*Pi^2 + (4*a*d)/(d + e*x^2) - (4*I)*b*Pi*ArcCsc[c*x] + (2*b*Sqrt[d]*Ar 
cCsc[c*x])/(Sqrt[d] - I*Sqrt[e]*x) + (2*b*Sqrt[d]*ArcCsc[c*x])/(Sqrt[d] + 
I*Sqrt[e]*x) + (8*I)*b*ArcCsc[c*x]^2 - 4*b*ArcSin[1/(c*x)] - (16*I)*b*ArcS 
in[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[(((-I)*c*Sqrt[d] + Sq 
rt[e])*Cot[(Pi + 2*ArcCsc[c*x])/4])/Sqrt[c^2*d + e]] - (16*I)*b*ArcSin[Sqr 
t[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((I*c*Sqrt[d] + Sqrt[e])*Co 
t[(Pi + 2*ArcCsc[c*x])/4])/Sqrt[c^2*d + e]] - 2*b*Pi*Log[1 + (Sqrt[e] - Sq 
rt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 4*b*ArcCsc[c*x]*Log[1 + (S 
qrt[e] - Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 8*b*ArcSin[Sqrt 
[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (Sqrt[e] - Sqrt[c^2*d + e]) 
/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 2*b*Pi*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + 
e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 4*b*ArcCsc[c*x]*Log[1 + (-Sqrt[e] + S 
qrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 8*b*ArcSin[Sqrt[1 + (I*Sq 
rt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[ 
d]*E^(I*ArcCsc[c*x]))] - 2*b*Pi*Log[1 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqr 
t[d]*E^(I*ArcCsc[c*x]))] + 4*b*ArcCsc[c*x]*Log[1 - (Sqrt[e] + Sqrt[c^2*d + 
 e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 8*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*S 
qrt[d])]/Sqrt[2]]*Log[1 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcC 
sc[c*x]))] - 2*b*Pi*Log[1 + (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*Ar 
cCsc[c*x]))] + 4*b*ArcCsc[c*x]*Log[1 + (Sqrt[e] + Sqrt[c^2*d + e])/(c*S...
 
3.2.4.3 Rubi [A] (verified)

Time = 1.76 (sec) , antiderivative size = 654, normalized size of antiderivative = 1.10, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5764, 5232, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 5764

\(\displaystyle -\int \frac {x \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )}{\left (\frac {d}{x^2}+e\right )^2}d\frac {1}{x}\)

\(\Big \downarrow \) 5232

\(\displaystyle -\int \left (\frac {x \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )}{e^2}-\frac {d \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )}{e^2 \left (\frac {d}{x^2}+e\right ) x}-\frac {d \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )}{e \left (\frac {d}{x^2}+e\right )^2 x}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e^2}+\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e^2}-\frac {a+b \arcsin \left (\frac {1}{c x}\right )}{2 e \left (\frac {d}{x^2}+e\right )}-\frac {\log \left (1-e^{2 i \arcsin \left (\frac {1}{c x}\right )}\right ) \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )}{e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^2}+\frac {i b \operatorname {PolyLog}\left (2,e^{2 i \arcsin \left (\frac {1}{c x}\right )}\right )}{2 e^2}+\frac {b \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} x \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{2 e^{3/2} \sqrt {c^2 d+e}}\)

input
Int[(x^3*(a + b*ArcCsc[c*x]))/(d + e*x^2)^2,x]
 
output
-1/2*(a + b*ArcSin[1/(c*x)])/(e*(e + d/x^2)) + (b*ArcTan[Sqrt[c^2*d + e]/( 
c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)])/(2*e^(3/2)*Sqrt[c^2*d + e]) + ((a + b 
*ArcSin[1/(c*x)])*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] - 
Sqrt[c^2*d + e])])/(2*e^2) + ((a + b*ArcSin[1/(c*x)])*Log[1 + (I*c*Sqrt[-d 
]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*e^2) + ((a + b*A 
rcSin[1/(c*x)])*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] + Sq 
rt[c^2*d + e])])/(2*e^2) + ((a + b*ArcSin[1/(c*x)])*Log[1 + (I*c*Sqrt[-d]* 
E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e^2) - ((a + b*Arc 
Sin[1/(c*x)])*Log[1 - E^((2*I)*ArcSin[1/(c*x)])])/e^2 - ((I/2)*b*PolyLog[2 
, ((-I)*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/e^ 
2 - ((I/2)*b*PolyLog[2, (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] - Sq 
rt[c^2*d + e])])/e^2 - ((I/2)*b*PolyLog[2, ((-I)*c*Sqrt[-d]*E^(I*ArcSin[1/ 
(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/e^2 - ((I/2)*b*PolyLog[2, (I*c*Sqrt 
[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/e^2 + ((I/2)*b*P 
olyLog[2, E^((2*I)*ArcSin[1/(c*x)])])/e^2
 

3.2.4.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5232
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 5764
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_) 
^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcSin[x/c])^n/x^( 
m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] 
&& IntegerQ[m] && IntegerQ[p]
 
3.2.4.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 4.55 (sec) , antiderivative size = 524, normalized size of antiderivative = 0.88

method result size
parts \(\frac {a d}{2 e^{2} \left (e \,x^{2}+d \right )}+\frac {a \ln \left (e \,x^{2}+d \right )}{2 e^{2}}-\frac {b \,c^{2} x^{2} \operatorname {arccsc}\left (c x \right )}{2 \left (c^{2} e \,x^{2}+c^{2} d \right ) e}-\frac {i b \,c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}-1\right ) \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{4 e^{2}}-\frac {i b \sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d {\left (\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}^{2}-2 c^{2} d -4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right )}{2 \left (c^{2} d +e \right ) e^{2}}-\frac {i b \operatorname {dilog}\left (\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e^{2}}-\frac {i b \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d -c^{2} d -4 e \right ) \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{4 e^{2}}+\frac {i b \operatorname {dilog}\left (1+\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e^{2}}-\frac {b \,\operatorname {arccsc}\left (c x \right ) \ln \left (1+\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e^{2}}\) \(524\)
derivativedivides \(\frac {\frac {a \,c^{6} d}{2 e^{2} \left (c^{2} e \,x^{2}+c^{2} d \right )}+\frac {a \,c^{4} \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{2 e^{2}}+b \,c^{4} \left (-\frac {c^{2} x^{2} \operatorname {arccsc}\left (c x \right )}{2 \left (c^{2} e \,x^{2}+c^{2} d \right ) e}-\frac {i \operatorname {dilog}\left (\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e^{2}}-\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}-1\right ) \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{4 e^{2}}-\frac {i \sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d {\left (\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}^{2}-2 c^{2} d -4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right )}{2 e^{2} \left (c^{2} d +e \right )}+\frac {i \operatorname {dilog}\left (1+\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e^{2}}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d -c^{2} d -4 e \right ) \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{4 e^{2}}-\frac {\operatorname {arccsc}\left (c x \right ) \ln \left (1+\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e^{2}}\right )}{c^{4}}\) \(547\)
default \(\frac {\frac {a \,c^{6} d}{2 e^{2} \left (c^{2} e \,x^{2}+c^{2} d \right )}+\frac {a \,c^{4} \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{2 e^{2}}+b \,c^{4} \left (-\frac {c^{2} x^{2} \operatorname {arccsc}\left (c x \right )}{2 \left (c^{2} e \,x^{2}+c^{2} d \right ) e}-\frac {i \operatorname {dilog}\left (\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e^{2}}-\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}-1\right ) \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{4 e^{2}}-\frac {i \sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d {\left (\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}^{2}-2 c^{2} d -4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right )}{2 e^{2} \left (c^{2} d +e \right )}+\frac {i \operatorname {dilog}\left (1+\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e^{2}}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d -c^{2} d -4 e \right ) \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{4 e^{2}}-\frac {\operatorname {arccsc}\left (c x \right ) \ln \left (1+\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e^{2}}\right )}{c^{4}}\) \(547\)

input
int(x^3*(a+b*arccsc(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
1/2*a*d/e^2/(e*x^2+d)+1/2*a/e^2*ln(e*x^2+d)-1/2*b*c^2*x^2*arccsc(c*x)/(c^2 
*e*x^2+c^2*d)/e-1/4*I*b*c^2/e^2*d*sum((_R1^2-1)/(_R1^2*c^2*d-c^2*d-2*e)*(I 
*arccsc(c*x)*ln((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1 
/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2+c^2*d))-1 
/2*I*b*(e*(c^2*d+e))^(1/2)/(c^2*d+e)/e^2*arctanh(1/4*(2*c^2*d*(I/c/x+(1-1/ 
c^2/x^2)^(1/2))^2-2*c^2*d-4*e)/(c^2*d*e+e^2)^(1/2))-I*b/e^2*dilog(I/c/x+(1 
-1/c^2/x^2)^(1/2))-1/4*I*b/e^2*sum((_R1^2*c^2*d-c^2*d-4*e)/(_R1^2*c^2*d-c^ 
2*d-2*e)*(I*arccsc(c*x)*ln((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1 
-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^ 
2+c^2*d))+I*b/e^2*dilog(1+I/c/x+(1-1/c^2/x^2)^(1/2))-b/e^2*arccsc(c*x)*ln( 
1+I/c/x+(1-1/c^2/x^2)^(1/2))
 
3.2.4.5 Fricas [F]

\[ \int \frac {x^3 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arccsc}\left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^3*(a+b*arccsc(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*x^3*arccsc(c*x) + a*x^3)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.2.4.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\text {Timed out} \]

input
integrate(x**3*(a+b*acsc(c*x))/(e*x**2+d)**2,x)
 
output
Timed out
 
3.2.4.7 Maxima [F]

\[ \int \frac {x^3 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arccsc}\left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^3*(a+b*arccsc(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 
output
1/2*a*(d/(e^3*x^2 + d*e^2) + log(e*x^2 + d)/e^2) + b*integrate(x^3*arctan2 
(1, sqrt(c*x + 1)*sqrt(c*x - 1))/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.2.4.8 Giac [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\text {Timed out} \]

input
integrate(x^3*(a+b*arccsc(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 
output
Timed out
 
3.2.4.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^3\,\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((x^3*(a + b*asin(1/(c*x))))/(d + e*x^2)^2,x)
 
output
int((x^3*(a + b*asin(1/(c*x))))/(d + e*x^2)^2, x)